Product Description

Factory Supply Custom Dump Truck excavator tractor forklift Hydraulic Oil Cylinder
Part number Tube dia  mm Rod dia  mm Stroke  mm
205-63-57100 120 85 1285
206-63-57100 120 85 1285
205-63-57160 120 85 1285
205-63-57120   135 95 1490
203-63-57130 125 85 1120
203-63-57131 125 85 1120
205-63-57130 125 85 1120

Specifications
1.Supply to USA,Europe,and Australia, Russia.
2.Material:Stainless Steel
3.Professional performance excavator parts supplier
4. High quality and low price

FAQ

Q1: Are you Manufacture or Trade Company?
A1: We are manufacture,we have 20 years experience for supply Metal material and products in domestic.

Q2: How can we guarantee quality?
A2: Always a pre-production sample before mass production;Always final Inspection before shipment;

Q3: What is your terms of payment ?
A3: 1.T/T: 30% deposit in advance, the balance 70% paid before shipment
2.30% down payment, the balance 70% paid against L/C at sight
3.CHINAMFG negotiation

Q4: Can you provide Certificates for aluminum materials ?
A4:Yes,we can supply MTC-Material Test Certificate.

Q5: Can you provide sample?
A5: Yes, we can provide you sample, but you need to pay for the sample and freight firstly. We will return the sample fee after
you make an order.

 

Certification: GS, RoHS, CE, ISO9001
Pressure: Medium Pressure
Work Temperature: Normal Temperature
Acting Way: Double Acting
Working Method: Piston Cylinder
Adjusted Form: Switching Type
Customization:
Available

|

forklift hydraulic cylinder

How does a forklift hydraulic cylinder handle variations in cylinder size?

A forklift hydraulic cylinder is designed to handle variations in cylinder size and accommodate different lifting capacities. Here's an explanation of how it achieves this:

The hydraulic cylinder's ability to handle variations in cylinder size is primarily dependent on its design and the following factors:

1. Piston Diameter:

The piston diameter of the hydraulic cylinder determines the lifting force it can generate. Forklift hydraulic cylinders are designed with different piston diameters to accommodate various load capacities. Larger piston diameters provide higher lifting capacities, while smaller diameters are suitable for lighter loads. The cylinder is designed and manufactured to match the required lifting capacity based on the forklift's specifications.

2. Cylinder Construction:

The hydraulic cylinder is constructed to withstand the forces exerted during lifting operations. The materials used in its construction, such as high-strength steel, are selected based on the anticipated load capacities. The cylinder's structural integrity ensures that it can handle the stress and pressure exerted during lifting, regardless of the cylinder size.

3. Hydraulic System Pressure:

The hydraulic system pressure plays a crucial role in determining the lifting capacity of the cylinder. By increasing or decreasing the pressure of the hydraulic fluid, the lifting force generated by the cylinder can be adjusted. The forklift's hydraulic system is designed to provide sufficient pressure to match the lifting requirements of different cylinder sizes.

4. Control Valves and Flow:

The forklift's hydraulic system incorporates control valves that regulate the flow of hydraulic fluid to the cylinder. These valves allow the operator to control the speed and force of the cylinder's extension and retraction. By adjusting the flow rate, the lifting capacity can be tailored to suit the specific cylinder size and the load being lifted.

5. Sealing Mechanisms:

The hydraulic cylinder incorporates seals to prevent fluid leakage and maintain pressure. These seals, designed to accommodate different cylinder sizes, ensure a proper seal between the piston and cylinder barrel. They are selected based on the specific requirements of the cylinder size to maintain optimal performance and prevent leakage.

In summary, a forklift hydraulic cylinder handles variations in cylinder size by incorporating design elements such as piston diameter, appropriate construction materials, hydraulic system pressure, control valves, and sealing mechanisms. These factors work together to ensure that the cylinder can generate the required lifting force and withstand the forces exerted during lifting operations, regardless of the cylinder size.

forklift hydraulic cylinder

How does a forklift hydraulic cylinder contribute to load handling precision?

A forklift hydraulic cylinder plays a significant role in achieving precise load handling. Here's an explanation of how it contributes to load handling precision:

The hydraulic cylinder contributes to load handling precision in the following ways:

1. Controlled Lifting and Lowering:

The hydraulic cylinder enables controlled lifting and lowering of the forks or attachment. By adjusting the hydraulic pressure and flow, the operator can smoothly and precisely raise or lower the load. This control allows for accurate positioning of the forks and precise handling of the load, minimizing the risk of damage or accidents.

2. Variable Speed Control:

Forklift hydraulic cylinders offer variable speed control during lift and tilt operations. The operator can adjust the hydraulic flow rate to control the speed at which the forks or attachment move. This variable speed control allows for fine adjustments and precise positioning of the load, even in delicate or sensitive handling situations.

3. Load Balancing:

The hydraulic cylinder contributes to load balancing, which is crucial for precise load handling. By adjusting the extension or retraction of the cylinder, the operator can maintain a proper balance between the load and the forklift. This balance ensures stability and control during lifting, lowering, and transport, enhancing load handling precision.

4. Fork Positioning:

Hydraulic cylinders are responsible for controlling the positioning of the forks or attachment. By extending or retracting the cylinders, the operator can adjust the horizontal position of the forks, aligning them with the load or pallet. This precise fork positioning allows for accurate entry into pallets or containers, ensuring efficient load handling.

5. Attachment Control:

In forklifts with specialized attachments, hydraulic cylinders contribute to precise control of the attachment's movements. Whether it's a side shift, fork positioner, or rotating attachment, the hydraulic cylinder enables accurate adjustments and alignment of the attachment to the load. This precise attachment control enhances load handling precision, especially when dealing with unique or challenging load configurations.

In summary, a forklift hydraulic cylinder contributes to load handling precision through controlled lifting and lowering, variable speed control, load balancing, fork positioning, and attachment control. These factors work together to provide operators with the ability to handle loads with accuracy, control, and efficiency.

forklift hydraulic cylinder

What are the components of a forklift hydraulic cylinder?

A forklift hydraulic cylinder consists of several components that work together to generate the necessary force for lifting loads. Here's a breakdown of the key components:

1. Cylinder Barrel:

The cylinder barrel is a cylindrical tube that provides the housing for the other components of the hydraulic cylinder. It is typically made of high-strength steel or other durable materials to withstand the hydraulic forces.

2. Piston:

The piston is a cylindrical component that fits inside the cylinder barrel. It divides the cylinder into two chambers and is responsible for transferring the hydraulic force. The piston is sealed against the cylinder barrel to prevent fluid leakage between the chambers.

3. Piston Rod:

The piston rod extends from the piston and protrudes out of the cylinder barrel. It is connected to the load-bearing structure of the forklift, such as the mast assembly. The piston rod transmits the force generated by the hydraulic fluid to lift and lower the loads.

4. Seals:

Seals are essential components that prevent hydraulic fluid leakage and maintain the pressure within the cylinder. They are typically made of rubber or other elastomeric materials and are positioned at various points of the cylinder, such as around the piston and piston rod.

5. Inlet and Outlet Ports:

The hydraulic cylinder has inlet and outlet ports that allow the hydraulic fluid to enter and exit the cylinder. The inlet port is connected to the hydraulic system's control valves and hoses, delivering pressurized fluid into the cylinder. The outlet port allows the fluid to flow out of the cylinder when the load is being lowered.

6. Mounting and Connection Components:

To integrate the hydraulic cylinder into the forklift's hydraulic system, various mounting and connection components are used. These can include brackets, pins, clevises, and other fittings that secure and connect the cylinder to the forklift's structure.

Each of these components plays a crucial role in the operation of the forklift hydraulic cylinder. The cylinder barrel provides the housing, the piston and piston rod generate the force, seals prevent fluid leakage, and the inlet and outlet ports facilitate the flow of hydraulic fluid. The mounting and connection components ensure proper integration into the forklift.

In summary, the components of a forklift hydraulic cylinder include the cylinder barrel, piston, piston rod, seals, inlet and outlet ports, and various mounting and connection components. Together, these components enable the hydraulic cylinder to generate the force necessary for lifting and lowering loads in a forklift.

China best Factory Supply Custom Dump Truck Excavator Tractor Forklift Hydraulic Oil Cylinder   wholesaler China best Factory Supply Custom Dump Truck Excavator Tractor Forklift Hydraulic Oil Cylinder   wholesaler
editor by CX 2023-10-12